Die Zeit finden

Aufrufe: 642     Aktiv: 02.10.2021 um 17:50
1
Moin,
ich würde eine Funktion aufstellen, die den Abstand von Jonas und Lukas in der Abhängigkeit der Zeit t angibt. Wenn die Funktion dann 0 ist, treffen sich die beiden zum Zeitpunkt \(t_0\), in anderen Worten \(f(t_0)=0\). Die Funktion wird aufgestellt, indem man den zurückgelegten Weg der beiden von der am Anfang zu überbrückenden Strecke (40km) subtrahiert: \(f(t)=40km-(v_J \cdot t+v_L \cdot t) = 40km-144\frac{km}{h} \cdot t\). Wobei \(v_J\) die Geschwindigkeit von Jonas ist und \(v_L\) die Geschwindigkeit, mit der sich Lukas bewegt. Dann musst du nur noch die Nullstelle berechnen.
LG
Diese Antwort melden
geantwortet

Punkte: 95

 

Danke sehr . Wie könnte der Graf aussehen   ─   izabelaferhati6 02.10.2021 um 15:30

das wäre dann eine lineare Funktion, die bei 40km (im koordinatensystem bietet sich 4 an) die y-Achse schneidet und bei ca16,7 min die x-Achse (hier auch eine geeignete Skalierung verwenden). Am ende musst du nur aufpassen, dass die Achsen richtig beschriftet sind.   ─   fix 02.10.2021 um 16:14

Hey also jemand meinte ich sollte diese Formel wählen
s/(v1+v2) =t
Nun bin ich verwirrt ob das richtig ist?
  ─   izabelaferhati6 02.10.2021 um 17:18

ja stimmt. das ist die Gleichung die auch ich verwendet habe, wenn man mit dem Nenner multipliziert komt das raus was ich oben geschrieben hab   ─   fix 02.10.2021 um 17:50

Kommentar schreiben